
Process overview
The approach to creating an enterprise-caliber API involves a set of well-defined process and roles.

There are distinct steps that first identify desired capabilities and then progress to a complete solution.

These phases require an in-depth understanding of the longer-term objectives, how best to establish a

solid foundation, as well as foresight in allowing for growth, adaptability, and flexibility. There are

general or overarching aspects that have a broad scope. This will include performance, security, utility,

and technical conventions. There are also very nuanced and niche aspects that have a very limited

focus. In this regard, there is a considerable impact on the later use, adoption, and lifecycle roadmap for

future utility. Lastly, as expected with most software engineering or development projects, a formal

iterative sequence will underly the delivery usually seen through a versioning methodology. In this

breakout text, we will take look at the process drivers as whole but focus on the overarching design

concern of what makes up API security.

The API development process is not detached from a standard software project approach. One key

difference, however, is that the preliminary research and analysis may be centered around an existing

offering or suite of solutions already in place. In many ways, this will greatly accelerate and support the

initial efforts. Having an established reference point does introduce a special type of drawback and risk.

The objectives and benefits of producing the API may require a great deal of translation from the

current concept in order to fulfill the end-use goals. Security and related access requirements will

undoubtedly align, but additional needs will present during the API design phase.

As it applies to security, we can look at the core considerations as three areas of interest: secrecy,

authentication, and authorization. A more granular discussion of course yields a more comprehensive

insight as it applies to the topic, but those three items are suitable to frame what will be most relevant

in the API design. Secrecy is simply the ability to control information as it is exchanged, stored, or

retrieved. For the most part, this concern is addressed through the use of encrypted internet

connections via SSL (secured sockets layer) and does not require an extra-ordinary decomposition. A

method that prevents eavesdropping is a sufficient model for the discussion purpose. Authentication

and authorization are very much complimentary, however the two are quite distinct. Additionally, the

granularity and modality of these aspects will define how the API security is addressed. Most simply

put, authentication is the resolution of an identity. That identity may represent a user account, that

identity may represent a more abstract entity. In either case, the result of authentication is a reference

to a reliably determined identity that is later used in the grant or denial of resources. The subsequent

grant or denial of resources for a particular identity then constitutes authorization.

It is important to indicate that secrecy,

authentication, and authorization may each be

achieved through a variety of methods, protocols,

platforms, and conventions. In the same

progression sequence, the intricacies associated

with each are more pronounced as applicable to

designing, implementing, and consuming an API.

Excluding secrecy (since this can be covered by SSL

internet connections), authentication and

authorization will garner the majority of attention

for the security implications.

Before describing how deeply authentication and

authorization influence the API as a whole, it is best

to revisit how the process flows from initial research

to concluding usage. Keep in mind that the API objectives, denoted as “Goals”, will likely differ subtly or

substantially from its counterpart in an existing offering/application. In using the OpenAPI standard (

www.openapis.org) as the accepted basis for the API delivery, strong delineation occurs between

design, implementation, and use. Furthermore, although practically all technical concerns have a

touchpoint in the design, the implementation still must take place to provide the expected utility. With

the OpenAPI standard, the prescribed design language,

technical documentation formats, and convention

governance truly form the blueprint dictating the later

implementation. Lastly, it is also necessary to

differentiate and clarify the separation between

implementation and usage. End-use or usage can be

interchange more generally as API (service)

consumption. The API consumption is usually in the

context of and application or utility that operates as part

of a larger constituent. An API consumer relies on the

design (blueprint), as an assurance of capabilities,

routines, input|outputs, and conventions. The API

implementation is the delivery of the design-defined

capabilities “to-specification” such that any consumer

would leverage the service(s) as described in the design.

The OpenAPI standard puts formal emphasis on the

design language, convention, and artifacts as the “glue”

that binds the subsequent implementation to use

scenarios.

Think of the completed/implemented API as an electric power utility provider. There are a set of

standards, conventions, specifications that are mandated by the design. The design will dictate the

“what” while the implementation has dominion over the “how”. The users of the electric power utility,

http://www.openapis.org/

regardless of their varying scenarios/situations, are assured that the implementation will adhere to

assertion made in the design. Regardless of the “how”, the specification of the “what” is guaranteed in

that regard – the power outlet is the same although the source of the electricity may differ.

 How does this apply to security? Is security

incorporated into the design definition or is this

an implementation concern? Is there any

variation based on the API consumer? Can you

limit API consumers? What if there is an existing

authentication and authorization basis – how is

that reflected with the API capabilities? There

are number of pertinent questions around how

security will take shape in an API. This will also

span and influence the design, implementation,

and use. Here are the starting points and

examples to put in perspective. Security is

applicable to design, implementation, and use –

there is no surprise that this is the case. Additionally, there are different technical responsibilities and

considerations in each. Organization of capabilities, existing credentials’ managements, and intended

consumption channels will all influence the API security profile. At the design tier, a mandate for

authentication can be added as a requirement for implementation. For example, authentication by

username & password (or alternate means) can be enforced as a prerequisite in using some or all of the

API routines. However, the implementation must enforce this design aspect. Furthermore, the

use/consumption must support the preconditions defined in the API design (e.g. collection of username

and password before initiating an action). Authorization granularity will then become very much

dependent on the feature scenarios. There is an expected partitioning of the lowest level granularity in

data management that is just outside the scope of what would be defined in the API design. Consider

this: a hypothetical API design can outline a generalized basis for online banking and simple financial

transactions. An authentication requirement is included, a set of permissions to perform certain tasks

are combined to establish a role, and then a formal registration process is created for application

developer to use this API. Individual financial institution would have the implementation responsibility

to adhere to the API design basis. The ability to “manage account profile” can be defined with the API as

part of a permissions scope, implemented by the financial institution, and the consumed by a 3rd party

“financial toolkit” app. The expectation is that once a username and password is provided, the

application will allow simple updates to the account profile. The nuance and specific implementation

component around security in this case is that only the profile of the corresponding authenticated user

can be modified.

 As part of a later topic

breakout, we will discuss the

process and management of

the aforementioned “3rd party”

app vendor. This entity has the

charter to create an application

that consumes the API, as

implemented, with the

expected capabilities as

enumerated in the design

documentation. Applications

that consume the API are

usually, but not exclusively,

produced by an entity outside

of the implementing

organization – often through a

curated “partner” program. It is

important to note that, API access requires a supplemental layer of “gatekeeping” and restraints such

that event the consuming applications are duly tracked. This is easily achieved through the creation of a

partner/developer portal where any vendor application must first “register” through a process. The

extends the security concepts discussed but it is a supplement outside of the

design|implementation|use workflow.

API Design Technical Elements: Authentication, Authorization,

Implementation
OpenAPI 2.0 vs 3.0

The Phase 2 engagement is based on the OpenAPI 3.0 standard which includes guidance, practices, and

conventions to establish Authentication and Authorization specifications as part of the API design

purview. As compared to the prior OpenAPI 2.0 standard, the OpenAPI 3.0 standard includes a greater

breadth and depth of contexts, with particular interest to enterprise scenarios, that can now be fully

addressed. These standardizations in extension of methodologies that can now described are reflective

of new capabilities in other standards (OAuth, OpenID) in addition to large-scale adoption and

simplification of use.

The primary OpenAPI capabilities in design descriptions for the 2.0 standard were limited to

Authentication. Additionally, the authentication mechanisms then were still a subset of what are now

considered commonplace. The subsequent definition of authorization as an access control descriptor

that aligns to more contemporary usages is definitely one of the advancements of the 3.0 standard

compared to its predecessor. For completely “public” API scenarios – neither the authentication nor

authorization points are applicable. However, for even the most basic application that exposes

functionality via OpenAPI, authentication and authorization should be addressed within a rudimentary

design context. For enterprise applications, these aspects are fairly common universal design

requirements.

1- Auto Generated Developer/Partner Portal, API Consumption

Phase 2A Related Tasks

Within the Phase 2a design efforts, and specifically to deliverables within tasks 1,2,3: Authentication and

Authorization specifications have touchpoints. The most relevant technical concerns are incorporated

into the design definitions, while at the same time allowing for methods that may not be as applicable

for example or training exercises. For example, referencing and including “basic” (user name &

password) and enterprise SSO (OpenID) scenarios are ideal based on the AW product line, Phase 1

conclusions, and “future-focused” technical outlook. The API design basis will also allow, support, and

provide guidance for authentication by x509 certificate or generated “secret keys” but the practical

examples and training exercise demonstrations will focus on the more applicable username|password

and MS Office 365 illustrations. Lastly, to again provided a real-world scenario for training, the

authorization concept within the API design (and to the OpenAPI 3.0 standard), will be aligned to be

familiar again constructs within AW products. This roughly maps to defining “roles” and securables for

those roles.

Wherever possible – any/all of the conceptual implementation points that are in the AW API design, will

be “recycled” as the example illustration for the training demos around the

design|implementation|usage theme.

OpenAPI 3.0 authentication|authorization will entail:

• Basic Authentication

• Token/API-Key

• Bearer Authentication

• OpenID (OAuth – MS Ent SSO, Google, etc)

• Cookie Persisted

Context

The API design and reference materials will focus on the basic authentication and the OpenID (connect)

modes as this will be most applicable for implementation and most beneficial for use. That singular

design, sample implementation, and usage flow will be part of the training exercise(s) in the early

sessions. This is a cross-cutting concerning that is fairly universal and not unique to a typical enterprise

application.

